

amount of rectified current in the crystal. The chopper serves to present alternately a low and a high impedance dc return. This change in crystal current affects the conversion loss to produce a square wave with more than 80 per cent modulation.

The modulator was developed for use in an attenuation measurement system. In this application a primary standard attenuator is in the IF system between the mixer and IF amplifier so that the principal noise source is the input stage of the IF amplifier. The ratio of the fundamental component of signal at 1 kc derived from the chopper modulation to that derived from a swept local oscillator was approximately unity. Thus, in this particular system the signal and noise levels remain unchanged.

In many applications there would be no isolation between the crystal mixer and the IF amplifier. In this type of receiver, the crystal noise is significant. The additional noise introduced by the chopper modulation was measured for 100-cps bandwidth at 1 and 10 kmc. The ratio of noise power with the chopper operating to that produced when the local oscillator was operating cw was 14 db. The ratio of the noise power with the chopper operating to that produced when the local oscillator was swept was 12 db.

The reduction of noise power by use of a phase sensitive detector can be 20 db without materially increasing the time to make an observation. Such a reduction would increase the dynamic range of the attenuation measurement system by 20 db, or increase the sensitivity of a receiver with the IF amplifier connected directly to the crystal by 8 db.

In summary, a method of producing phase-controlled amplitude modulated IF signals from mixing cw signals has been developed for microwave receivers which has been successful in the frequency range 300 mc to 12,000 mc. The principle appears applicable to any frequency range in which crystal mixers are used. For a given signal-to-noise ratio, the dynamic range of a microwave attenuation measurement system can be increased by 20 db through the use of this modulator and a phase sensitive detector without increasing the time constant in the final indicating device.

G. E. SCHAFER
Nat'l. Bur. of Standards
Boulder, Colo.

Reciprocal Ferrite Phase Shifters in Rectangular Waveguide*

A recent article by Reggia and Spencer¹ describes a reciprocal ferrite phase shifter for rectangular waveguide. This phase shifter consists of a pencil of ferrite suspended along the central axis of the waveguide by means of a dielectric. The phase is controlled by an applied longitudinal magnetic field. This geometry is shown in Fig. 1. Large amounts of phase shift are produced by this geometry with low insertion loss, and application to antenna beam scanning appears likely, as suggested by Reggia and Spencer.

One of the limitations of the configuration of Fig. 1 is power handling. In this regard it is similar to Faraday rotators in circular waveguide. The ferrite in both instances is suspended by a dielectric in the center of the guide having no contact with the walls. If the ferrite material were to be placed in contact with the waveguide walls, a large amount of heat would be conducted away, thus greatly increasing the power handling ability. In order to investigate this possibility, the configurations shown in Fig. 2 were measured for reciprocal phase shift characteristics. It was found that the geometry used in Fig. 2(a) resulted in a phase advance, while that used in Fig. 2(b) resulted in a phase delay. The results of these measurements taken at 9600 mc are shown in Fig. 3.

A measurement of insertion loss for the three phase shifters showed that the loss of the configuration of Fig. 1 varied from 0.3 db at zero field to about 0.8 db at saturation, while that of Fig. 2(a) stayed constant at a value near 0.1 db for all fields, and that of Fig. 2(b) varied from 0.2 db to 0.6 db at saturation. These loss figures indicate that the figure of merit (degrees of phase shift + loss) for the design with the ferrites in contact with the narrow walls of the waveguide [Fig. 2(a)] is equal or slightly better than that of the centrally suspended ferrite rod. The amount of phase shift is low for the configuration of Fig. 2(a) when compared to that of Fig. 1. However, additional changes in thickness or height might improve this situation.

The configuration of Fig. 2(a) was subjected to 250 watts of average power resulting in a measured temperature rise at the waveguide wall of only 50°C.

The temperature rise indicated resulted in some additional measurements on the temperature sensitivity of these phase shifters. Measurements were made of phase shift as a function of temperature, and all three designs were found to show large variations. Phase shifts due to temperature variations over the range -20°C to +71°C showed as much change as that due to variation of applied magnetic field. In order to apply these phase shifters to antenna scanning, ovens may have to be utilized to stabilize temperature variations. Another approach that can offer a partial solution relies on controlling the magnetic field in such a way as to compensate for temperature changes.

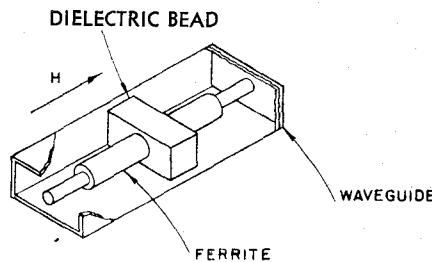


Fig. 1—Phase shifter using a cylindrical rod of ferrite suspended along the axis of a rectangular waveguide.

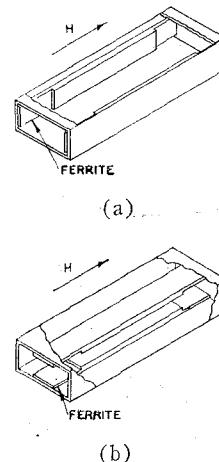


Fig. 2—Reciprocal ferrite phase shifters in rectangular waveguide in which the ferrite is in contact with the waveguide wall.

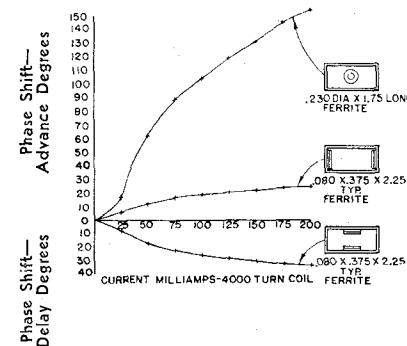


Fig. 3—Reciprocal phase advance and delay of the ferrite phase shifters constructed with R-1 ferrite and utilizing a 2.5-inch long 4000-turn coil of 0.005-inch diameter wire wrapped about the 1 1/2-inch OD rectangular waveguide.

This can be done by employing either an open or closed loop circuit. However, this technique limits the dynamic range of the phase shifter.

In summary, it can be pointed out that the result of attempting to improve the power handling ability of the design of Reggia and Spencer resulted in two new ferrite geometries, one giving a phase advance and the other a phase delay, each with power handling capabilities of at least 250 watts. Additionally, the temperature sensitivity of all three devices may limit their usefulness in antenna beam scanning applications unless they are utilized in a parallel feed system where only relative phase shifts are important, and all the phase shifters have identical geometry.

ALVIN CLAVIN
Rantec Corp.
Calabasas, Calif.

* Received by the PGM TT, April 2, 1958.

¹ F. Reggia and E. G. Spencer, "A new technique in ferrite phase shifting for beam scanning of microwave antennas," Proc. IRE, vol. 45, pp. 1510-1517; November, 1957.